Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Jun Wan, ${ }^{\text {a }}$ Chun-Li Li, ${ }^{\text {a }}$ Xue-Mei Li, ${ }^{\text {a }}$ Shu-Sheng Zhang ${ }^{a}$ * and Ping-Kai Ouyang ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, 210093 Nanjing, Jiangsu, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.053$
$w R$ factor $=0.130$
Data-to-parameter ratio $=14.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(1H-Benzotriazol-1-yl)-1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}$, molecules are linked into ribbons along the b axis by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds. The packing is further stabilized by a $\pi-\pi$ interaction.

Comment

Triazole derivatives exhibit growth-inhibiting activities against some microorganisms (Xu et al., 2002). In order to search for new triazole compounds with higher bioactivity, the title compound, (I), which contains both triazole and benzotriazole, was synthesized.

The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987) and comparable to those reported in the related compound 2-(1H-1,2,3-benzotriazol-1-yl)-1-(4-methylphenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone (Wan et al., 2005). The benzotriazole group is essentially planar, with a dihedral angle of $1.9(1)^{\circ}$ between the benzene and triazole rings. The mean plane of the benzotriazole group makes dihedral angles of 74.3 (1) and 33.9 (1) ${ }^{\circ}$ with the other triazole (N4/N5/C16/N6/C15) ring and the benzene (C1-C6) ring, respectively. The dihedral angle between the planes of the latter two aromatic rings is $69.9(1)^{\circ}$. In the crystal structure, molecules are linked into ribbons by intermolecular C $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Fig. 2 and Table 2). The packing is further stabilized by a $\pi-\pi$ interaction between the benzene (C1-C6) rings, the distance between the centroids $\left[C g \cdots C g\left(\frac{1}{2}-x, \frac{3}{2}-y,-z\right)\right]$ being 3.883 (2) Å.

Experimental

The title compound was prepared according to the method of Wan et al. (2005).

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}$
$M_{r}=373.20$
Monoclinic, $C 2 / \mathrm{c} / \mathrm{c}$
$a=21.950(3) \AA$
$b=9.9632(15) \AA$
$c=15.538(2) \AA$
$\beta=106.028(2){ }^{\circ}$
$V=3266.0(8) \AA^{3}$
$Z=8$
$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}$
$D_{x}=1.518 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2583 reflections
$\theta=2.3-24.0^{\circ}$
$\mu=0.42 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Column, colorless
$0.40 \times 0.23 \times 0.12 \mathrm{~mm}$

Received 6 September 2005 Accepted 9 September 2005 Online 14 September 2005

Figure 1
The structure of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme.

Data collection

Siemens SMART 1000 CCD area-
detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.851, T_{\text {max }}=0.952$
8949 measured reflections

3199 independent reflections
2500 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-27 \rightarrow 22$
$k=-11 \rightarrow 12$
$l=-18 \rightarrow 19$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.130$
$S=1.03$
3199 reflections
226 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 3$	$1.731(3)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.445(3)$
$\mathrm{C} 2-\mathrm{C} 5$	$1.723(3)$	$\mathrm{N} 5-\mathrm{C} 8$	$1.447(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.201(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.549(3)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{N} 5$	$111.83(19)$	$\mathrm{N} 5-\mathrm{C} 8-\mathrm{C} 7$	$110.26(18)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$112.21(19)$		

Table 2
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{~N}^{\mathrm{i}}$	0.93	2.54	$3.465(3)$	172
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{~N}^{\mathrm{i}}$	0.98	2.54	$3.455(3)$	156

Symmetry code: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z-\frac{1}{2}$.

Figure 2
A view down the c axis. Hydrogen bonds are indicated by dashed lines.

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range 0.93-0.98 \AA and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Program for New Century Excellent Talents in Universities (No. NCET-040649) and the Project of Educational Administration of Shandong Province (No. J04B12).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wan, J., Li, C.-L., Li, X.-M., Ouyang, P.-K. \& Zhang, S.-S. (2005). Chem. Res. Chin. Univ. Submitted.
Xu, L. Z., Jiao, K., Zhang, S. S. \& Kuang, S. P. (2002). Bull. Korean Chem. Soc. 23, 1699-1701.

